skip to main content


Search for: All records

Creators/Authors contains: "Weinberger, Kilian Q"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Oh, Alice ; Naumann, Tristan ; Globerson, Amir ; Saenko, Kate ; Hardt, Moritz ; Levine, Sergey (Ed.)
    Diffusion models have achieved great success in modeling continuous data modalities such as images, audio, and video, but have seen limited use in discrete domains such as language. Recent attempts to adapt diffusion to language have presented diffusion as an alternative to existing pretrained language models. We view diffusion and existing language models as complementary. We demonstrate that encoder-decoder language models can be utilized to efficiently learn high-quality language autoencoders. We then demonstrate that continuous diffusion models can be learned in the latent space of the language autoencoder, enabling us to sample continuous latent representations that can be decoded into natural language with the pretrained decoder. We validate the effectiveness of our approach for unconditional, class-conditional, and sequence-to-sequence language generation. We demonstrate across multiple diverse data sets that our latent language diffusion models are significantly more effective than previous diffusion language models. Our code is available at https://github.com/justinlovelace/latent-diffusion-for-language . 
    more » « less
    Free, publicly-accessible full text available December 11, 2024
  2. Krause, Andreas ; Brunskill, Emma ; Cho, Kyunghyun ; Engelhardt, Barbara ; Sabato, Sivan ; Scarlett, Jonathan (Ed.)
    Differentiable Search Index is a recently proposed paradigm for document retrieval, that encodes information about a corpus of documents within the parameters of a neural network and directly maps queries to corresponding documents. These models have achieved state-of-the-art performances for document retrieval across many benchmarks. These kinds of models have a significant limitation: it is not easy to add new documents after a model is trained. We propose IncDSI, a method to add documents in real time (about 20-50ms per document), without retraining the model on the entire dataset (or even parts thereof). Instead we formulate the addition of documents as a constrained optimization problem that makes minimal changes to the network parameters. Although orders of magnitude faster, our approach is competitive with re-training the model on the whole dataset and enables the development of document retrieval systems that can be updated with new information in real-time. Our code for IncDSI is available at \href{https://github.com/varshakishore/IncDSI}{https://github.com/varshakishore/IncDSI}. 
    more » « less
    Free, publicly-accessible full text available July 24, 2024
  3. Free, publicly-accessible full text available May 29, 2024
  4. Current 3D object detectors for autonomous driving are almost entirely trained on human-annotated data. Although of high quality, the generation of such data is laborious and costly, restricting them to a few specific locations and object types. This paper proposes an alternative approach entirely based on unlabeled data, which can be collected cheaply and in abundance almost everywhere on earth. Our ap- proach leverages several simple common sense heuristics to create an initial set of approximate seed labels. For ex- ample, relevant traffic participants are generally not per- sistent across multiple traversals of the same route, do not fly, and are never under ground. We demonstrate that these seed labels are highly effective to bootstrap a surpris- ingly accurate detector through repeated self-training with- out a single human annotated label. Code is available at https:// github.com/ YurongYou/ MODEST . 
    more » « less